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Abstract
The present lecture reports the analysis of combining micro-channels with wall corrugation as a thermal

exchange intensification mechanism aimed at new applications in high performance cooling. The proposed
model involves axial heat diffusion along the fluid and adiabatic regions both upstream and downstream to the
corrugated heat transfer section, in light of the lower values of Reynolds numbers (and consequently Peclet
numbers) that can be encountered in the present class of problems. Aimed at developing a fast and reliable
methodology for optimization purposes, the related laminar velocity field is obtained by an approximate
analytical solution valid for smooth corrugations and low Reynolds numbers, typical of the analyzed micro-
channel configurations, locally satisfying the continuity equation. A hybrid numerical-analytical solution
methodology for the energy equation is proposed, based on the Generalized Integral Transform Technique
(GITT) in partial transformation mode, and for a transient formulation. The hybrid approach is first validated for
the case of a smooth parallel-plates channel situation, and the importance of axial heat conduction along the
fluid is then demonstrated. Heat transfer enhancement is analyzed in terms of the local Nusselt number and
dimensionless bulk temperature along the heat transfer section. An illustrative sinusoidal corrugation shape is
adopted and the influence of Reynolds number and corrugation geometric parameters is discussed
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INTRODUCTION

Nanotechnology and micro-fabrication techniques have been allowing for the enhancement and
development of a number of engineering applications, while providing new challenging scientific
perspectives in fundamental research. Within the scope of thermal engineering, energy conservation
and sustainable development demands have been driving research efforts towards more energy
efficient equipments and processes. In this context, the scale reduction in mechanical fabrication has
been permitting the miniaturization of thermal devices, such as in the case of micro-heat exchangers.
Novel experimental, modeling and simulation approaches have been required to explain deviations of
the heat transfer behavior of micro-systems as compared to classical macro-scale phenomena. Our
research effort in this context is related to the fundamental analysis of forced convection within micro-
channels, as required for the design of micro-heat exchangers, including the effects of axial heat
conduction and wall corrugation or roughness on heat transfer enhancement. The present lecture is
thus aimed at illustrating some of the research work undertaken at COPPE/UFRJ, jointly with
CENPES, the Petrobras Research Center, in Rio de Janeiro, Brasil, towards the characterization,
modeling, and simulation of micro-channels and their associated thermal convective behavior.

The petroleum and process industries have been quite active in progressively incorporating heat
transfer enhancement solutions to the efficiency increase requirements along the years [1]. More
recently, heat exchangers employing micro-channels with characteristic dimensions below 500
microns  have been calling the attention of researchers and practitioners, towards applications that
require high heat removal demands and/or space and weight limitations [2]. Motivated by the search
for optimal solutions in heat exchange rates, Steinke & Kandlikar [3] critically analyzed various heat
transfer enhancement techniques as applied to the micro-channels scale. Among the passive
enhancement techniques then discussed, the authors emphasize the utilization of treated surfaces,
rough or corrugated walls and additives for working fluids. Several other approaches were disregarded
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in light of the difficulties in manufacturing or mechanically modifying the thermal system at the
micro-scale. In parallel, a few previous works have addressed the interest in investigating channel
corrugations at the micro-scale, either for liquid or gaseous flows [4, 5].

In this context, the research here reported addresses the convective heat transfer within micro-
channels possibly enhanced by the presence of axial heat conduction and wall corrugations. First, the
typical low Reynolds numbers in such micro-systems may lead to low values of the Peclet number that
bring up some relevance to the axial heat diffusion along the fluid stream, especially for regions close
to the inlet. Then, both the upstream and downstream sections of the micro-channel that are not
actually part of the heat transfer section, may participate in the overall heat transfer process, and
finally yield different predictions than those reached by making use of conventional macro-scale
relations for ordinary liquids or gases. Therefore, our first objective is to inspect such effects of the
axial heat diffusion within the fluid. For this reason, it was initially necessary to identify the range of
governing parameters to be analyzed, in order to allow for an appropriate modeling of the relevant
physical phenomena that may appear at this dimensional scale [6]. Second, either due to the inherent
difficulties in achieving smooth surfaces during micro-fabrication processes or to the actual purpose of
improving mixing and/or heat transfer, micro-channels with irregularly shaped walls started gaining
some focus in the heat and mass transfer literature, as pointed out in the brief review above. Thus, the
analysis of laminar forced convection within micro-channels with corrugated walls, and the possible
heat transfer enhancement effect achieved, is another objective of the present study.

The steady two-dimensional flow problem was handled by adopting an approximate analytical
solution that essentially adapts the fully developed velocity profile to the wall geometric variations,
just satisfying the continuity equation [7]. Such simplified approach was introduced in [7] aimed at the
solution of incompressible flow problems in low Reynolds number situations and gradual geometric
variations in wall corrugations. The solution methodology for the energy equation first introduces a
domain decomposition strategy, redefining the coordinates systems for the three heat transfer regions,
so as to rewrite the problem in the form of a system of equations within the same mathematical
domain, coupled at the interfaces of the three regions. Then, a hybrid numerical-analytical solution
based on the Generalized Integral Transform Technique (GITT) is proposed [8–10], which consists on
the elimination of the transversal coordinate by integral transformation, and results in a coupled
system of one-dimensional partial differential equations for the transformed temperatures. This system
is then handled numerically with local error control by making use of the Method of Lines
implemented in the Mathematica 5.2 system [11]. This so-called partial transformation mode of the
GITT allows for the accurate and flexible solution of multidimensional partial differential systems [12]
and has been previously employed in the solution of transient and periodic forced convection within
smooth parallel-plates micro-channels [13–15]. This alternative hybrid solution strategy to the more
usual full integral transformation mode is of particular interest in the treatment of transient convection-
diffusion problems with a preferential convective direction. In such cases, the partial integral
transformation in all but one space coordinate, may offer an interesting combination of relative
advantages between the eigenfunction expansion approach and the selected numerical method for
handling the coupled system of one-dimensional partial differential equations that results from the
transformation procedure [13].

The situation of a smooth parallel-plates channel is first analyzed, for typical values of the
governing parameters, so as to provide validations of the hybrid numerical-analytical solution for the
energy equation, while also illustrating the importance of the axial heat diffusion along the fluid,
especially in the transition from the first adiabatic region and the heat transfer section. Then, the
approximate analytical solution of the flow problem is demonstrated, as compared to benchmark
results of the two dimensional Navier-Stokes equations, as obtained from the GITT itself in previous
works [16, 17]. The illustrative situation of sinusoidal symmetric corrugated walls is considered more
closely, allowing for parametric variations on the corrugation geometry. Finally, the heat transfer
enhancement is inspected for a few different combinations of flow, thermal and geometric parameters,
in terms of both the dimensionless bulk temperature and local Nusselt number along the heat transfer
section.

ANALYSIS
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We consider transient laminar forced convection within micro-channels formed by smooth or
corrugated plates. Three regions along the channel are considered in the problem formulation, as
described in Figure 1 below. First, an adiabatic region with smooth walls, followed by the heat transfer
section with prescribed temperatures at the corrugated walls, and the third one, following the
corrugated region, is again made of smooth adiabatic walls. The problem formulation adopts the same
geometry and boundary conditions as presented by Wang & Chen [18]. The walls boundaries are then
described by the following functions along the longitudinal coordinate:
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The two-dimensional steady flow is assumed to be laminar and incompressible, with temperature
independent thermophysical properties, while viscous dissipation and natural convection effects are
neglected. Due to the possible low values of Peclet number, in light of the lower range of Reynolds
numbers, axial diffusion along the fluid is not disregarded. Also, the flow is assumed to be fully
developed at the first section entrance, but varies along the axial coordinate once the corrugated
section is reached.  

Fig. 1. Geometry and coordinates system for heat transfer in corrugated channel

In obtaining the velocity field along the flow, the full Navier-Stokes equations should be
employed, yielding the variable velocity components and pressure field along the transversal and
longitudinal directions, as recently demonstrated in [16-17], where the Generalized Integral Transform
Technique (GITT) has been employed in the hybrid numerical-analytical solution of this laminar flow.
However, for sufficiently low Reynolds numbers and smooth variations on the wall corrugations, an
approximate solution has been previously proposed [7], essentially by accounting for the variable
cross section within the local mass balance equation, but neglecting the momentum equations
influence on the velocity components modification. These explicit solutions for the velocity
components are particularly handy, especially in design and optimization tasks, and shall be here
exploited to demonstrate the transient thermal problem solution. Thus, following this approach, the
velocity components are analytically derived as:
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It can be noticed that according to the approximate solution in eqs.(2), at the entrance and exit of
the corrugated section, as well as for a smooth heat transfer section, the flow becomes the classical
parabolic fully developed velocity profile for parallel plates, given in the present coordinates system
by:
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while the transversal velocity component vanishes. Once the velocity field is available, the energy
balance is given as:
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The following dimensionless groups are defined:
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Then, the dimensionless form of the temperature problem is written as:
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It can be observed from eqs. (5 g, h) that the formulation does not impose axial symmetry to the
thermal problem, but if symmetry prevails, eq. (5 h) shall be an homogeneous one.

In light of the discontinuity on the boundary conditions at the junction of the three regions, it is
adequate to propose a domain decomposition to handle the three mathematical problems separately,
coupled at the cross sections between each pair of regions. The three problems formulation should
therefore include the continuity conditions of temperature and heat flux at the fluid interfaces between
the regions. Thus, the problem formulation for the first adiabatic region becomes:
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For the heat exchanging section, we have:
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and finally for the exiting section, also adiabatic:
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The temperature problem for the heated section remains non-homogeneous in eq.(7f). In order to
homogenize the problem in the transversal direction y, a filtering solution, ( , )yφ ξ , is employed for the
potential ,2 ( , , )AT y tξ , in the form:
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A simple and sufficiently general form for the filter ),( yξφ  is obtained by satisfying the diffusion
operator in the transversal direction, which yields:
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Then, the homogeneous problem for the corrugated section is given by:
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Next, the decomposed domain is described with three different coordinates systems, which match
at the two interfaces, as shown in Figure 2 below. The normalized longitudinal coordinates are then
computed in terms of the original dimensionless coordinate as:
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Fig. 2. Coordinates systems for the decomposed domain

Thus, in terms of the redefined coordinates systems the dimensionless problem formulation is
given, for each of the three regions, as:
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One may observe that after the coordinates systems redefinition, the problems are coupled only at
the interfaces and all the domains limits are the same, and therefore the dependent variables may be
algebraically interpreted as applied to one single domain in the longitudinal coordinate (0<x<1).

Following the formalism in the GITT [8–10], the auxiliary problems are now defined to construct
the eigenfunction expansions in each region. For regions 1 and 3 we adopt the same eigenvalue
problem, with second kind boundary conditions, given by:
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whose solution in terms of eigenfunctions, norms and eigenvalues is readily found as
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For region 2, the auxiliary problem has to account for the irregular walls, which is incorporated
into the eigenfunctions and eigenvalues via the functions of x that describe the transversal domains, as
shown below:
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Thus, the x-dependent eigenfunctions, norms and eigenvalues are given by:
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Once the eigenvalue problems have been defined and solved, the integral transform pairs
(transform-inverse) are constructed as:
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One may start with the integral transformation of eqs.(13) for region 1, operating with
1

0

( )
y

i
y

y dy•ψ∫ , and after substitution of the inverse formula (18b) and some manipulation, the

transformed system becomes:
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Similarly, eqs.(14) are operated on with 
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temperature problem in region 2:
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And finally, for region 3, eqs.(15) are operated on with 
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The coefficients that appear on the transformed system eqs.(21)–(23) are analytically obtained
from the following integrations:
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Eqs. (21)–(23) form an infinite system of partial differential equations having as independent
variables the unified dimensionless longitudinal coordinate, x, and dimensionless time, t, and as
dependent variables the transformed temperatures in each region. For computational purposes, the
system is truncated to a finite order, truncating the eigenfunction expansions for each field in a
sufficiently large number of terms for each region (N1, N2 and N3). Due to the x-variable nature of the
system coefficients, eqs.(24), the PDE system has to be numerically solved, for instance employing the
Method of Lines with local error control as implemented on the function NDSolve of the Mathematica
5.2 symbolic-numerical computation platform [11].

For the thermal problem, results are reported in terms of the bulk temperature and the local
Nusselt numbers at the two channel walls (yielding the same results for the symmetric situation), as
defined below:
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RESULTS AND DISCUSSION
The constructed computer code was first verified against the thermal problem results for transient

convection within smooth parallel-plates channels [14] with one single region, i.e., only the heat
transfer section. A thorough convergence analysis was then undertaken on the bulk and local
temperature results so as to provide confidence on the numerical results to be now reported. As a
consolidation of such analysis, the adoption of truncation orders of N1 = 4, N2 = 8 and N3 = 4 were
sufficient to provide three to four significant digits in the temperature field results, in a fairly wide
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range of the dimensionless longitudinal coordinate and for the values of Peclet number Pe =1, 10 and
30, to be reported below. It was also concluded that the order of the expansions is required to
gradually increase as Pe increases.

It was found of interest to also validate the present analysis for smooth parallel plates against a
previously reported analytical solution [19] that accounts for the upstream adiabatic region, under
steady laminar forced convection for low Peclet numbers. Figure 3 thus presents such comparison in
terms of the dimensionless bulk temperature, where only the results along the heat transfer section are
presented. Different values of a modified Peclet number are employed, named PeT , according to the
definition in [19]. A fairly good adherence between the two independent solutions can be observed
providing further validation to the proposed hybrid methodology. Also, one may already observe the
marked influence of the axial diffusion along the fluid on the temperature behavior within the actual
heat trasnfer section.
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Fig. 3. Comparison of  dimensionless bulk temperatures from present GITT solution and
from analytical steady-state solution in [19] for a smooth parallel-plates channel with an
upstream adiabatic region and low Peclet number

Figure 4 now illustrates the influence of the axial heat diffusion within the fluid more closely,
showing the steady-state dimensionless bulk temperatures along the channel for Pe = 1, 10, and 30,
and especially across the interface between the upstream adiabatic region and the heat transfer section.
The pre-cooling (or heating) effect provided by the presence of the upstream region is quite noticeable
for the lower values of Peclet number, which is quite relevant along the transient state as well, as also
shown in Figure 5 for Pe = 30. As a result, a heat transfer enhancement effect is in fact observed,
resulting in higher values of the Nusselt number in this region for decreasing Peclet number. As can be
deduced, significant errors may result if experimental results are employed to estimate average Nusselt
numbers that assume the bulk temperature at the heat transfer section inlet as the uniform temperature
at the upstream region inlet.
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interface between the two regions)
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in describing the flow behavior within the corrugated channel. As previously
ed approach is expected to provide reasonable results for lower values of the
for smoother corrugations. Thus, numerical results for the full Navier-Stokes
oyed in the verification of the present approximate analytical solutions, as
T hybrid numerical-analytical solution available in [16, 17]. For instance,
e longitudinal velocity component at different axial positions along the
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amplitude of Fig. 6b was more significant in deviating the approximate solution from the converged
GITT results for the full Navier-Stokes formulation than the increase in Reynolds number of Fig. 7.
The comparisons of the longitudinal velocity component are emphasized since the related convective
term is the most important one in the heat transfer problem to be addressed.
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Fig. 7. Comparison of longitudinal velocity
component for corrugated channel between
present approximate results and GITT solution
of [16,17], for Re = 100 and α = 0.1

Figure 8 illustrates the transient behavior of the bulk temperature for Pe = 10, where the dashed
red line denotes the interface between the adiabatic region 1 and the corrugated section, region 2.
Clearly, we may see that due to the low Reynolds number value (and consequently low Peclet
number), the axial diffusion along the fluid promotes a sensible effect on the bulk temperature
evolution within the access region (region 1) along the transient period. The steady-state results are
however closer to the situation of an unheated inlet section, which would be obtained by the model
that neglects axial diffusion of heat within the fluid. Therefore, for micro-channel applications that
involve low Peclet numbers, the behavior of the thermal wave front can be markedly affected by the
presence of an adiabatic inlet section. It can also be observed that the bulk temperature behavior
presents a typical fluctuating shape due to the presence of the wall corrugations.

Next, Figure 9 illustrates the effect of the Peclet number on the bulk temperatures for the steady-
state situation, by taking the two values Pe = 10 and 30. Similarly to the smooth channel situation, one
may clearly observe the more significant pre-heating effect in region 1 due to the lower value of Pe,
but also the more pronounced effects on the bulk temperature fluctuations due to the wall corrugations
in the case of a smaller axial diffusion of heat, when the transversal effects start playing a major role.

For the heat transfer enhancement analysis it is of interest to evaluate the behavior of the Nusselt
number under different corrugation conditions. Figure 10, for instance, illustrates the local Nusselt
number results for Pe = 10 and α = 0.1 and 0.2. The smooth parallel plates case is also plotted for
reference purposes, as the solid black line. One may see that even with the lower corrugation
amplitude value some noticeable heat transfer enhancement is already evident, and marked increases
in the local heat transfer coefficient are achieved for the higher corrugation amplitude value for this
value of Pe.
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CONCLUSION
Laminar forced convection within micro-channels with smooth and corrugated walls was analyzed

and discussed to investigate possible heat transfer enhancement effects. The physical modeling for the
thermal problem includes discontinuities in the boundary conditions at the channel walls, considering
the interfaces between entrance and exit adiabatic regions and an intermediate heat transfer section.
The thermal problem was then solved with the Generalized Integral Transform Technique (GITT)
applied in partial transformation mode and with a transient formulation. The presented results
exploited the average temperature field within the micro-channel and the local Nusselt number within
the heat transfer section of the channel. The axial diffusion effect along the fluid was first examined
for a smooth parallel-plates channel, in light of the lower values of Peclet number achievable in such
applications due to the low values of Reynolds number. The importance of accounting for an upstream
adiabatic region was discussed, illustrating the resulting marked changes on the temperature
distribution behavior within the actual heat transfer section. Then, for the corrugated heat transfer
section case, the velocity field was obtained by making use of an approximate solution methodology,
shown to be appropriate for small scale corrugations and low Reynolds numbers. From such results,
one may notice the combined influence on the enhancement in local Nusselt number values along the
heat transfer section due to both the low values of Peclet number and the presence of corrugated walls.
The analysis may now proceed towards the more accurate solution of the flow problem employing the
GITT itself, as previously accomplished in [16, 17], and also to the utilization of optimization schemes
towards the identification of wall profiles for optimally enhanced heat transfer.
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