ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ(12)

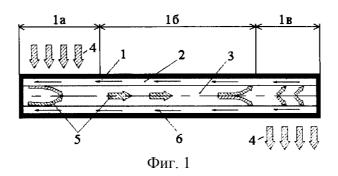
РЕСПУБЛИКА БЕЛАРУСЬ

(19) **BY** (11) **6708**

(13) **C1**

 $(51)^7$ F 28D 15/02

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ


(54)

ТЕПЛОВАЯ ТРУБА

- (21) Номер заявки: а 20030485
- (22) 2003.06.03
- (46) 2004.12.30
- (71) Заявитель: Государственное научное учреждение "Институт тепло- и массообмена им. А.В.Лыкова" НАН Беларуси (ВҮ)
- (72) Авторы: Васильев Леонард Леонидович; Кулаков Андрей Геннадьевич; Рабецкий Михаил Иванович; Антух Александр Антонович; Васильев Леонид Леонардович (ВҮ)
- (73) Патентообладатель: Государственное научное учреждение "Институт тепло-и массообмена им. А.В.Лыкова" НАН Беларуси (ВҮ)

(57)

- 1. Тепловая труба, содержащая герметичный корпус с зонами испарения, транспорта и конденсации, насыщенную теплоносителем в жидкой фазе капиллярно-пористую структуру, размещенную на внутренней поверхности корпуса и выполненную с переменными размерами пор в разных зонах, внутренний паровой канал с теплоносителем в паровой фазе, отличающаяся тем, что по меньшей мере в зоне испарения капиллярно-пористая структура выполнена бипористой, причем среднегидравлический радиус пор одной группы пор бипористой структуры больше среднегидравлического радиуса пор другой группы пор бипористой структуры не менее чем в два раза, среднегидравлический радиус пор в остальных зонах больше среднегидравлического радиуса пор группы пор меньшего размера в зоне испарения, а объем заправки тепловой трубы теплоносителем в жидкой фазе лежит в диапазоне от полного объема пор всей капиллярно-пористой структуры до суммы объема пор группы пор меньшего размера в зоне испарения и полного объема пор в зонах транспорта и конденсации.
- 2. Труба по п. 1, отличающаяся тем, что по меньшей мере в зоне испарения капиллярно-пористая структура выполнена с использованием порошка хотя бы одного высокотеплопроводного материала.
- 3. Труба по п. 1 или 2, **отличающаяся** тем, что группа пор большего размера имеет ориентацию перпендикулярно оси тепловой трубы.

4. Труба по п. 2 или 3, **отличающаяся** тем, что капиллярно-пористая структура в зонах транспорта и конденсации выполнена с использованием порошка, размеры частиц которого больше размеров частиц порошка, с использованием которого выполнена капиллярно-пористая структура в зоне испарения.

(56) SU 877305, 1981. SU 1495627 A1, 1986. WO 98/33031 A. WO 98/06992 A. US 5046553 A, 1991.

Изобретение относится к теплопередающим устройствам, в частности к тепловым трубам, и может быть использовано в электронике, энергетике, электротехнике, холодильной технике и других отраслях промышленности.

Известна тепловая труба [1], включающая корпус с насыщенной теплоносителем капиллярной структурой, по меньшей мере в одной теплообменной зоне выполненной с переменной вдоль тепловой трубы пористостью, увеличивающейся по направлению к транспортной зоне. Недостатком такой конструкции является высокое термическое сопротивление, т.к. площадь поверхности испарения равна внутренней поверхности пористой структуры в зоне испарения и практически неизменна при изменении теплового потока. Известная тепловая труба не обеспечивает и высокую теплопередающую способность, т.к. транспортные свойства тепловой трубы определяются не только теплообменными зонами, но и транспортной зоной, и увеличение пористости в зоне конденсации в направлении транспортной зоны приводит к снижению транспортных свойств капиллярно-пористой структуры. Кроме того, фактором, непосредственно влияющим на гидравлическое сопротивление тепловой трубы, является прежде всего среднегидравлический размер пор, а не пористость.

Известна также тепловая труба [2] (прототип), содержащая герметичный корпус с зонами испарения, транспорта и конденсации, насыщенную жидким теплоносителем капиллярно-пористую структуру, размещенную на внутренней поверхности корпуса с переменными по длине корпуса размерами пор к разных зонах тепловой трубы, в виде войлока в зоне испарения и в виде продольных канавок в остальной ее части. К причинам, препятствующим решению поставленной ниже задачи, относится отсутствие оптимизации капиллярно-пористой структуры как вдоль тепловой трубы, так и в зоне испарения.

Задачей предлагаемого изобретения является снижение термического сопротивления тепловой трубы и повышение теплопередающей способности. Указанный технический результат при осуществлении изобретения достигается тем, что в известной тепловой трубе, содержащей герметичный корпус с зонами испарения, транспорта и конденсации, насыщенную теплоносителем в жидкой фазе капиллярно-пористую структуру, размещенную на внутренней поверхности корпуса и выполненную с переменными размерами пор в разных зонах, внутренний паровой канал с теплоносителем в паровой фазе, капиллярно-пористая структура выполнена таким образом, что, по крайней мере, в зоне испарения она имеет две группы пор по размеру, т.е. является бипористой, причем среднегидравлический радиус пор одной группы пор больше среднегидравлического радиуса пор другой группы пор не менее чем в два раза, среднегидравлический радиус пор в зонах транспорта и конденсации больше среднегидравлического радиуса пор группы пор меньшего размера в зоне испарения, а объем заправки тепловой трубы теплоносителем в жидкой фазе лежит в диапазоне от полного объема пор всей капиллярно-пористой структуры до суммы объема

пор группы пор меньшего размера в зоне испарения и полного объема пор в зонах транспорта и конденсации.

Кроме того, тепловая труба имеет, по крайней мере, в зоне испарения капиллярнопористую структуру, выполненную с использованием порошка хотя бы одного высокотеплопроводного материала.

Для усиления положительного эффекта предпочтительно использование ориентации группы пор большого размера перпендикулярно оси тепловой трубы.

Тепловая труба может иметь капиллярно-пористую структуру, в зонах транспорта и конденсации выполненную с использованием порошка, размеры частиц которого больше размеров частиц порошка, с использованием которого выполнена капиллярно-пористая структура в зоне испарения.

Предложенная конструкция обеспечивает перераспределение и специализацию функций групп пор разных размеров. В зоне испарения поры большего размера заполнены паром, увеличивая поверхность испарения, что ведет к увеличению коэффициента теплоотдачи и снижению общего термического сопротивления тепловой трубы, которое определяется главным образом коэффициентом теплоотдачи в зоне испарения. В зонах транспорта и конденсации в порах большего размера, имеющих низкое гидравлическое сопротивление, в основном осуществляется транспорт теплоносителя в жидкой фазе. Общее гидравлическое сопротивление тепловой трубы снижается, что приводит к увеличению передаваемого теплового потока. Группа пор меньшего размера в зоне испарения имеет высокий капиллярный потенциал, что также ведет к увеличению транспортной способности ТТ и соответствующему повышению передаваемого теплового потока.

Применение высокотеплопроводных порошков обеспечивает дополнительное увеличение коэффициента теплоотдачи, зависящего от теплопроводности капиллярно-пористой структуры. Этой же цели служит и ориентация группы пор большего размера перпендикулярно оси тепловой трубы, что содействует выходу пара из пор. Использование более крупных частиц порошка в зонах транспорта и конденсации ведет к снижению гидравлического сопротивления и соответственно увеличивает теплопередающую способность тепловой трубы.

Сущность изобретения поясняется чертежами 1-6.

На фиг. 1 представлена схема предлагаемой тепловой трубы.

На фиг. 2 показана фотография капиллярно-пористой структуры с двумя группами пор по размеру.

На фиг. 3 приведен пример функции распределения пор по размерам капиллярно-пористой структуры с двумя группами пор по размеру.

На фиг. 4 показана капиллярно-пористая структура с добавками к основному порошку.

На фиг. 5 показана фотография обычной капиллярно-пористой структуры.

На фиг. 6 приведен пример функции распределения пор по размерам обычной капиллярно-пористой структуры.

Тепловая труба содержит замкнутый герметичный корпус 1 с зонами испарения 1а, транспорта 1б и конденсации 1в. На внутренней поверхности корпуса размещается капиллярно-пористая структура 2, насыщенная жидким теплоносителем, а внутренний паровой канал 3 заполнен теплоносителем в паровой фазе. Капиллярно-пористая структура (фиг. 2) в зоне испарения выполнена бипористой: состоит из двух групп пор по размеру, т.е. функция распределения пор по размерам имеет два максимума (фиг. 3).

Размеры пор капиллярно-пористой структуры в зоне транспорта 1б и конденсации 1в больше размера пор группы пор меньшего размера в зоне испарения. При этом в этих зонах может быть использована такая же капиллярно-пористая структура, как и в зоне испарения.

Объем теплоносителя в жидкой фазе в тепловой трубе находится в пределах от полного объема пор всей капиллярно-пористой структуры до суммы объема пор группы пор меньшего размера в зоне испарения и полного объема пор в зонах транспорта и конденсации. При этом минимальная заправка обеспечивает минимальное термическое сопротивление.

Дополнительно, часть порошка капиллярно-пористой структуры (фиг. 4) может состоять из порошка более высокотеплопроводного материала (частицы черного цвета), чем основной объем материала порошка (частицы серого цвета). Например, в качестве капиллярно-пористой структуры может использоваться композит, состоящий из металлического и алмазного порошка, который имеет теплопроводность, в два раза большую теплопроводности меди. Могут использоваться добавки графита к порошку из нержавеющей стали, алмаза к медному порошку, алюминия к Al_2O_3 . Это обеспечивает увеличение общей теплопроводности капиллярно-пористой структуры и соответственно уменьшение термического сопротивления.

При использовании определенной фракции порошка при получении капиллярно-пористых структур, обычно применяемых в тепловых трубах, образуются поры соответствующего размера, по которым осуществляется транспорт теплоносителя в жидкой фазе. При этом получается капиллярно-пористая структура (фиг. 5), с функцией распределения пор по размерам, имеющей один основной максимум (фиг. 6), а среднегидравлический размер пор зависит от размера частиц соответствующей фракции. Так, например, при получении пористой структуры путем спекания свободнонасыпанного медного порошка получаются поры, примерно в три раза меньшие среднего размера частиц в фракции (таблица). Для увеличения размера пор и пористости структуры, состоящей из частиц определенной фракции, применяются специальные методы, например используется порообразователь.

Размеры частиц	Средний размер частиц, мкм	Средний гидравлический
во фракции, мкм	средии размер пастид, мим	размер пор, мкм
40-63	51,5	18,37
63-100	81,5	24,48
100-160	130	35,4
160-200	180	48,8
200-315	257,5	65

Для получения бипористой капиллярно-пористой структуры для образования пор группы пор большего размера (макропор) используется порообразователь соответствующих размеров, который выгорает (сублимирует) при спекании пористой структуры, и на его месте образуются поры большого размера. Порообразователь берется с размерами гранул, не менее чем в 2 раза большими среднегидравлического радиуса пор группы пор меньшего размера. В качестве порообразователя может быть использован карбамид.

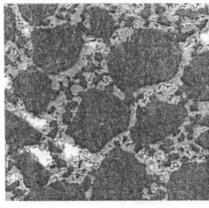
Второй способ получения бипористой структуры состоит в использовании смеси частиц порошка, обладающих разной усадкой при спекании, приводящей к образованию микротрещин - дополнительных пор.

Третий способ заключается в предварительном получении мелкопористой структуры из частиц мелкой фракции, размоле этой структуры на пористые частицы большего размера, чем частицы порошка мелкой фракции, и последующем получении пористой структуры из полученых мелкопористых частиц.

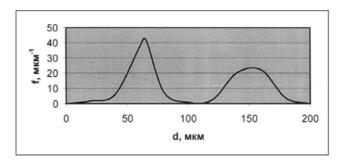
Капиллярно-пористая структура в зонах транспорта и конденсации может изготавливаться как с использованием порообразователя или за счет использования в этих зонах фракции порошка больших размеров, чем в зоне испарения.

Тепловая труба работает следующим образом. Тепловой поток 4 при нагреве зоны испарения 1а тепловой трубы вызывает испарение жидкого теплоносителя из пропитанной им капиллярно-пористой структуры 2 в паровой канал 3, движение потока пара (направление показано стрелками 5) под действием перепада давления через зону транспорта 1б в зону конденсации 1в и конденсацию на поверхности капиллярно-пористой структуры в этой зоне. При этом отводится переданный тепловой трубой тепловой поток 4, а сконденсировавшийся теплоноситель возвращается в жидкой фазе в зону испарения под действием капиллярных сил (направление движения показано стрелками 6).

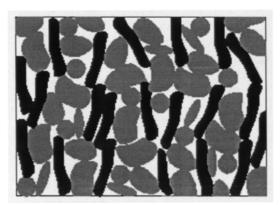
Теплопередающая способность тепловой трубы тем больше, чем меньше гидравлическое сопротивление капиллярно-пористой структуры и больше ее капиллярный потенциал в зоне испарения, а термическое сопротивление определяется в основном коэффициентом теплоотдачи в зоне испарения. Обычно в тепловых трубах транспорт теплоносителя осуществляется порами всех размеров, при этом в зоне испарения одни и те же поры служат и в качестве капиллярного насоса и для транспорта теплоносителя, и из них же идет испарение при нагреве этой зоны тепловой трубы. Т.е. поверхностью испарения является внутренняя поверхность капиллярно-пористой структуры.

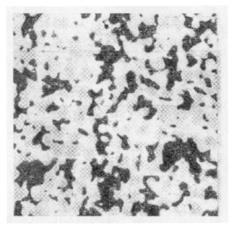

Отличием предложенной конструкции является то, что группа пор меньшего размера полностью насыщена теплоносителем и по ней осуществляется транспорт теплоносителя к поверхности испарения. При этом в зоне испарения с увеличением теплового потока растет осушение группы пор большего размера. Т.е. степень насыщенности капиллярнопористой структуры теплоносителем пропорциональна плотности теплового потока. С увеличением плотности теплового потока увеличивается площадь испарения, что обеспечивает пропорциональность коэффициента теплоотдачи при испарении плотности подводимого теплового потока, что приводит к увеличению коэффициента теплоотдачи в зоне испарения и соответственно к снижению термического сопротивления тепловой трубы в целом.

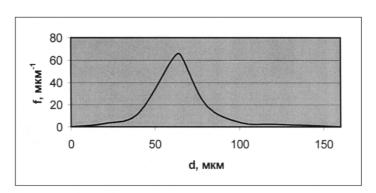
Весь объем пор в зонах транспорта и конденсации заполнен теплоносителем. При этом больший среднегидравлический размер пор в этой зоне по сравнению с размером группы пор меньшего размера в зоне испарения снижает общее гидравлическое сопротивление при сохранении высокого капиллярного потенциала, определяемого порами меньшего размера зоны испарения. Группа пор большего размера в зонах транспорта и конденсации, полностью насыщенная теплоносителем, является артерией для транспорта жидкости в этих зонах.


Проведенные испытания подтвердили, что предложенная тепловая труба по сравнению с известными конструкциями позволяет за счет оптимизации капиллярно-пористой структуры достичь увеличения теплопередающей способности и снижения термического сопротивления тепловой трубы.

Источники информации:


- 1. A.c. CCCP 802772, MIIK F 28D 15/00, 1981.
- 2. A.c. CCCP 877305, MIK F 28D 15/00, 1981.


Фиг. 2


Фиг. 3

Фиг. 4

Фиг. 5

Фиг. 6